School of Mathematics and Natural Sciences

Mr Prof. Dr. Peter Zaspel

Biography

seit Juli 2023 W2 Professur Software für Daten-intensive Anwendungen, Bergische Universität Wuppertal, Wuppertal, Deutschland
März 2022 – Juni 2023 Assistant Professor of Computer Science (Machine Learning), Jacobs University Bremen gGmbH, Bremen, Deutschland
Aug. 2019 – Feb. 2022 Interim Professor of Computer Science (Machine Learning), Jacobs University Bremen gGmbH, Bremen, Deutschland
2017 – 2019 Postdoc, Departement für Mathematik und Informatik, Universität Basel, Schweiz.
2015 – 2017 Postdoc, Heidelberg Institut für Theoretische Studien: HITS gGmbH, Heidelberg, Deutschland.
2015 – 2017 Postdoc (assoziiert), Interdisziplinäres Zentrum für Wissenschaftliches Rechnen (IWR, Universität Heidelberg), Heidelberg, Deutschland
2009 – 2015 Wissenschaftlicher Mitarbeiter, Institute für Numerische Simulation (INS, Universität Bonn), Bonn, Deutschland.

Education

2019 – 2021 Habilitation in Mathematik, Universität Basel, Basel, Schweiz.
2009 – 2015 Doktorand in angewandter Mathematik, Universität Bonn, Bonn, Deutschland.
2004 – 2009 Diplom Student in Informatik, Universität Bonn, Bonn, Deutschland.

Ongoing research projects

Research interests

  • Machine Learning, Uncertainty Quantification and Big Data
    • multi-fidelity machine learning (e.g. by sparse grid combination technique)
    • approximate training (low-rank approximation by e.g. hierarchical matrices)
    • stochastic collocation, Bayesian inference / data assimilation
    • basic research wrt. reproducing kernel Hilbert spaces / Gaussian processes
  • High Performance Computing
    • numerics / algorithms for many-core processors (e.g. GPUs)
    • scalable distributed-memory parallel computing in machine learning and scientific computing
  • Interdisciplinary applications
    • material science, quantum chemistry (data from DFT, CC, etc.)
    • paleo-climate reconstruction (calibration, etc.)
    • fluid mechanics (two-phase flows, plasma physics)
    • medical imaging (dynamic contrast-enhanced imaging)

Plublications

Publication list

Invited talks

Augmenting the explanatory power of predictions by uncertainty quantification,
2nd Workshop on Embedded Machine Learning – WEML2018, Heidelberg University, Nov 8, 2018.

Meshfree and multi-index approximations for parametric real-world problems,
Seminar on Uncertainty Quantification, RWTH Aachen, Aachen, Germany, August 29, 2018.

Optimal-complexity kernel-based stochastic collocation with application in fluid mechanics,
Seminar of the “Mathematics in Computational Science and Engineering” group, on invite by Prof. Dr. Fabio Nobile, EPFL, Lausanne, Switzerland, October 24, 2017.

Scalable solvers for meshless methods on many-core clusters,
QUIET 2017 – Quantification of Uncertainty: Improving Efficiency and Technology, SISSA, International School for Advanced Studies, Trieste, Italy, July 18-21, 2017.

H-matrices on many-core hardware with applications in parametric PDE’s,
Colloquium of the Faculty of Engineering, on invite by Prof. Dr. Steffen Börm, University of Kiel, December 9, 2016.

Algorithmic patterns for hierarchical matrices on many-core processors,
Seminar in Numerical Analysis, on invite by Prof. Dr. Helmut Harbrecht, University of Basel, September 18, 2016.

 

More information about #UniWuppertal: